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Abstract This paper discusses a new procedure for calculating the conductivity and
volumetric heat capacity of drill cuttings from boreholes, an important factor when
designing shallow geothermal systems. The experiment in question consists of placing
55–65 kg drill cutting samples inside a container, along with a heat source (point source
assumed), and arranging temperature sensors, connected to a data logger, at known
distances from the source. A mathematical method for determining the conductivity
and volumetric heat capacity associated with this experiment is described.

Keywords Thermal conductivity · Volumetric heat capacity · Geothermal energy ·
Cuttings · Borehole

1 Introduction

While the problems inherent to the use of fossil fuels and nuclear energy have become
increasingly apparent in recent years, alternative energy sources with a much lower
impact on the environment are undergoing steady progress. Among them, low-enthalpy
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geothermal energy is developing in exciting new directions, particularly in countries
like Spain, where the geology is not suitable for high temperatures at great depths.

Shallow geothermal energy relies heavily on in situ ground thermal data in order
to function properly. As such, the aim of this study is to use simple and inexpen-
sive thermal tests, carried out with drill cuttings, in order to determine two important
ground thermal properties: volumetric heat capacity and thermal conductivity. While
tabulated data or measurements taken from borehole thermal response tests (TRT) are
important tools, our method constitutes an appealing alternative or complement, since
it provides data which are specific to each geothermal site. Once the data are collected,
an original mathematical model is used to process them, providing a set of essential
parameters for the design of a ground-coupled geothermal installation.

This subject has been studied by several researchers, who have focused mainly on
the analysis of thermal conductivity as a basic parameter for controlling heat flow
[1,2].

Other researchers have developed their own methods to estimate conductivity in
sedimentary basins [3] and by testing boreholes in situ (TRT) [4–6].

Of the various existing methods for determining ground thermal properties in situ,
there are two that stand out: the linear source method and the cylindrical source method,
both of which offer analytical solutions to the problem of heat transmission from a
source into an infinite homogeneous medium.

The linear source method is based on the traditional theory that over sufficiently
long periods of time, heat exchange in the ground can be modelled as a linear heat
source in an infinite medium [7,8].

In the cylindrical source method the elements that exchange heat with the ground
are modelled as cylindrical heat sources in an infinite medium [8]. While Deerman
and Kavanaugh [9] extended this model to variable heat flow, their method made it so
that the data were difficult to analyze. Some other authors [9–12] have proposed more
detailed numerical models in two and three dimensions.

In this paper we propose a simple laboratory method to determine the thermal
parameters both of borehole cuttings, as well as other ground samples in the form
of cuttings. This method involves heating the sample with a point heat source whose
output is known, and using sensors located at known distances from the source to
measure the temperatures at constant time intervals.

2 Hypothesis

In order to simplify the mathematical model as much as possible, and to be able to
apply the point heat source method, we have chosen a spherical study geometry. The
premises of this study are as follows:

• The sample is made up of cuttings from roto-percussion drilling, and its density
and lithology are homogeneous.

• The volume of the container that holds the sample is considered to be infinite. This
premise is only valid for the points inside the container that are furthest from the
container’s wall.
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Fig. 1 Sensors before and after being covered by the ground sample

• The heat source is placed in the center of the container, is essentially spherical, and
has a small diameter. Given the dimensions of the sample, the source is considered
to be a point heat source. The greater the distance between the sensor and the heat
source, the truer this premise becomes.

• The thermal flow is radial. This premise is sufficiently true past a certain distance
away from the source, and before the wall of the container, which is cylindrical in
shape.

• The heat released by the sample, the walls of the container, the top of the container,
etc., follows a constant convection coefficient.

• At the moment that heating begins, all points in the sample have the same temper-
ature.

• There is a discreet number N of temperature sensors situated on a horizontal radius
at distances Ri from the center of the heat source. A sensor is placed on the external
surface of the container, and another on the internal surface to monitor the ambient
temperature.

3 Experimental set-up

The weight of the samples used in this laboratory method, be they borehole drill cut-
tings or something essentially similar, ranges from 55 to 65 kg, and are to be placed
in a cylindrical container that is 45 cm tall and 48 cm in diameter.

In the centre of the cylindrical container there is a small incandescent light bulb,
which we assume to be a point heat source. On the same horizontal plane as this
source, and at known distances from its centre, there are six sensors located inside the
sample itself, at 4.5, 5.5, 6.5, 8.5, 11 and 15 cm from the centre of the bulb, one on
the exterior surface of the container, and another in the laboratory in order to evaluate
the convection coefficient h (Fig. 1). Four different types of lithologies have been
analyzed: clay, sand, limestone and shale, in the form of fragments or dry cuttings.

The temperature sensors are small LM35 integrated-circuit sensors, whose output
voltage is proportional to the temperature in degrees Celsius. The sensors can handle
temperatures of up to 150 ◦C, which is higher that the maximum temperatures reached
when heating the samples. The sensors are connected to an ADC-16 data logger
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(www.picotech.com). This data logger sends the data directly to a PC via USB, where
they are treated with the corresponding software applications.

We have applied a new model, which we will refer to as “point heat source,” and
involves, as mentioned above, various hypotheses about the sample (infinite, homoge-
neous, isotropic), the heat source (point), the heat flow (radial), and the sensors (point),
in order to simplify the mathematic model.

4 Thermal conductivity k

In steady-state conditions, and given the hypotheses made for this model, we can use
the equation for heat flow φ = P

4·π ·r2 and the Fournier equation in order to determine
the relationship between the temperature increase in each sensor with respect to the
temperature in reference sensor �Ti, and thermal conductivity k:

�Ti = − P

4 · π · k
· 1

Ri
+ P

4 · π · k
· 1

Rref
(1)

where:

• P is the power of the heat source (W)
• Ri is the distance from the heat source to any sensor (m)
• k is thermal conductivity (W/mK)
• Rref is the distance from a reference sensor to the heat source (m)

This equation represents a straight line, in which the y-axis represents �Ti (steady
state conditions) for each sensor, and the x-axis represents 1

Ri
. Conductivity can be

determined based on the slope of the line u = − P
4·π ·ku

or the intersection of the line

with the y-axis v = P
4·π ·kv·Rref

.
Figure 2 contains the experimental data, while Fig. 2a shows the temperature

change in the different sensors as the sample is heated, and Fig. 2b shows �Ti
(steady state conditions) versus 1

Ri
.

The results of the different tests are shown in Table 1, and the result of the 20
experiments carried out with the four types of samples is shown in Table 2.

The sample with the lowest conductivity is the limestone cuttings, and the highest,
the sand sample. The shale and clay samples have the same conductivity, 0.45 W/mK.

5 Volumetric heat capacity (ρ.Cp)

One of the challenges of measuring volumetric heat capacity is that it cannot be carried
out in steady-state conditions. Likewise, the computational costs involved in using the
PDE (partial differential equation) would be prohibitive.

Before determining
(
ρ · Cp

)
, one must first determine k, which, as we have seen,

is indeed determined in steady-state conditions. By studying, during non-steady-state
conditions, the model of heat transmission through a homogeneous, isotropic and
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Fig. 2 Experiment data and the determination of thermal conductivity in test 5 (sand). a The heating
process. b The straight line from Eq. 1 used to determine conductivity based on the experimental data

infinite medium, with a point heat source located at its centre, the volumetric heat
capacity, ρCp, can be found using the expression:

(
ρ · C p

) = �H (t)

4 · π · ∫Rext
0 T (r, t) · r2 · dr

(2)

where:

• H(t) is the increase in enthalpy in the system due to the presence of a point heat
source.
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Table 1 Thermal conductivity (k) values for the Fig. 2

Slope u = − P
4·π ·ku

= −5.648 ku = 0.54

Intersection with the y-axis
[
v = P

4·π ·kv·Rref

]
v = P

4·π ·kv ·Rre f
= 114.9 kv = 0.58

Table 2 Results of the experiments and calculations to determine k for the different dry materials in cutting
form

Experiment Clay Sand Limestone
(detritus)

Shale (detritus)

ku
(W/mK)

kv

(W/mK)
ku
(W/mK)

kv

(W/mK)
ku
(W/mK)

kv

(W/mK)
ku
(W/mK)

kv

(W/mK)

1 0.44 0.47 0.57 0.59 0.41 0.43 0.44 0.47

2 0.43 0.46 0.58 0.60 0.42 0.43 0.44 0.47

3 0.44 0.47 0.58 0.60 0.41 0.42 0.44 0.44

4 0.44 0.47 0.59 0.61

5 0.43 0.46 0.54 0.58

6 0.54 0.58

7 0.54 0.58

8 0.54 0.59

9 0.54 0.59

Average 0.44 0.47 0.56 0.59 0.41 0.43 0.44 0.46

k 0.45 0.57 0.42 0.45

• T (r, t) is the temperature difference with respect to T0 at a point situated at a
distance r and a time t .

• T0 is the initial temperature (◦C)
• r is the distance from any point in the sample to the centre of the heat source (m)
• t is time (s)
• Rext is the external radius of the model (m)

According to the first law of thermodynamics for an isobaric process, the increase in
enthalpy in a system H (t) is equal to the heat emitted by the thermal source minus the
heat lost Qp (t):

�H (t) = P · t − Q p(t) (3)

The system is assumed to be a sphere with the heat source at its centre and radius
Rext. The value for Rext must satisfy the condition that the outer surface of the sphere
SR be the same as the surface of the cylinder that holds the sample. It is assumed
that the heat transferred by conduction though the sphere, and the heat transferred by
convection outside the sample, are equal. The heat lost by the system Qp (t) through
its external boundary, with a convection coefficient of h, is given by the expression:
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Q p (t) = h · SR ·
t∫

0

T (Rext , t) · dt (4)

Thus, by substituting and working out Eq. 2, we obtain:

(
ρC p

) = (
ρC p

)′ − h · SR

4 · π
·

t∫

0
T (Rext , t) · dt

∫Rext
0 T (r, t) · r2 · dr

(5)

where:

(
ρC p

)′ = P · t

4 · π · ∫Rext
0 T (r, t) · r2 · dr

(6)

It is assumed that the sample is large enough in size that we can disregard the error
caused by the fact that the medium is not actually infinite. With the temperature sen-
sors i it is possible to determine the temperature values at the points at distance Ri

from the centre of the heat source. The points situated between two sensors i and i +1
are taken to have a temperature of Tit , which varies linearly with the distance between
these two sensors. In light of all of this, Eq. 6 can be approximated as:

(
ρC p

)′ ∼= P · t
∑N

i=1

[
∫Ri+1

Ri
Tit · dV

] = (
ρC p

)∗ (7)

where, dV = 4 · π · r2 · dr, and the interpolated value of Tit is:

Tit = Ti+1,t − Ti,t

Ri+1 − Ri
· r +

[
Ti+1,t − Ti+1,t − Ti,t

Ri+1 − Ri
· Ri+1

]

Which we can work out to get:

(
ρC p

)∗ = P · t

4 · π · ∑N
i=1

[
bi

4 · ci
· (

Ti+1,t −Ti,t
)+ ai

3 · ci
· (

Ti,t · Ri+1−Ti+1,t · Ri
)] (8)

where:

ai = R3
i+1 − R3

i

bi = R4
i+1 − R4

i

ci = Ri+1 − Ri

Figure 3 indicates the arrangement of the sensors and the temperature at a point at
distance r , located between sensors i and i + 1, where the temperatures at the latter
two sensors are known.
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Fig. 3 General arrangement of the sensors, and determining the temperature at distance r from the heat
source

According to Ingersoll et al. 1954, the temperature in a point source at any point
T (r, t) that appears in the denominator of the second term in Eq. 5 can be found in
terms of time and the distance from the point source by:

T (r, t) = Q̇

2 · π3/2 · r · k

∞∫

r ·η
e−β2 · dβ (9)

Which can also be expressed as:

T (r, t) = Q̇

4 · π · r · k
· (1 − er f (x)) (10)

where:

• Q̇ is the heat injection rate (W)
• x = r

2·√α·t
• α = k

(ρCp)
is thermal diffusivity (m/s2) and,

• erf(x) is the complementary error function which may be expressed as:

er f (x) = 2√
π

·
∞∑

n=0

(−1)n · x2∗n+1

n! · (2 · n + 1)
= 2√

π
(x − x3

3
+ x5

10
− x7

42
+ x9

216
− · · · )

(11)
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Fig. 4 Function �M versus time

Such that

�M =
{

er f (x) − 2√
π

(x)

}

Or, in other words, the difference between the complementary error function and the
first term of the series expansion, assuming that Q̇ = 40 [W], r = 0.15 m, and k = 0.5.
It was found that for times greater than 35,000 s, the error �M made when considering
only the first term of the sum instead of the entire sum is less that 2 %.

Figure 4 shows the function �M versus time.
In this situation we obtain the integrals

∫ Rext
0 T (r, t) · r2 · dr and

∫ t
0 T (Rext, t) · dt

that appear in Eq. 5. On the one hand:

Rext∫

0

T (r, t) · r2 · dr =
Rext∫

0

Q̇ · r2

4 · π · r · k
·
(

1 − 2√
π

· r

2 · √
α · t

)
· dr

= Q̇

24 · π · k · (π · α)1/2 · t1/2
·
(

3 · (π · α)1/2 · t1/2 · R2
ext − 2 · R3

ext

)

And on the other, by making r = Rext , it follows that:

T (Rext , t) = Q̇

4 · π · Rext · k · (π · α)1/2 · t1/2
·
(
(π · α)1/2 · t1/2 − Rext

)
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We find that:

t∫

0

T (Rext , t) · dt = Q̇ · (π · α)1/2 · t − 8 · R2
ext · π · k · (π · α)1/2 · t1/2

4 · π · Rext · k · (π · α)1/2

Substituting and simplifying we are left with:

(
ρC p

)∗ = (
ρC p

) + ς · t3/2 − σ · t

χ · t1/2 − ω
(12)

where:

ς = 6 · Q̇ · h · SR · (π · α)1/2

σ = 8 · R2
ext · h · SR · π · k · (π · α)1/2

χ = 12 · Q̇ · π · (π · α)1/2 · R3
ext

ω = 8 · π · Q̇ · R4
ext

This means that the auxiliary function
(
ρCp

)∗ which we procured using the model,
and calculated based on the tests, is the sum of

(
ρCp

)
and another time-dependent

term. This function has a singularity for time t = (ω/χ)2 =
(

2·Rext
3·(π ·α)1/2

)2
s. If we

make Rext = 0.24 m and assume that α = 0.045e − 5, then we find that the singular-
ity corresponds to a time period of 18,000 s outside the field of approximation used
above. This means that in non-steady state, for values of t > 35,000 s, the parameter(
ρCp

)∗ is approximately the sum of a constant value,
(
ρCp

)
, plus an additional term

that represents a straight line with slope ς/χ .
We confirm that:

lim
t→0

(
ρC p

)∗ = (
ρC p

)

Once can thus determine the value of
(
ρCp

)
as the value where the straight segment

of the experiment’s curve from Fig. 4 meets the y-axis, disregarding all times lower
than 35,000 s.

First, in an Excel spreadsheet, the values of ai, bi and ci are determined. Next, for
each time,

(
ρCp

)∗ is determined based on the equation [5]. Table 3 shows an example
of the result of calculating

(
ρCp

)∗ for different times in one of the tests with sand.
The values are graphed using t − (

ρCp
)∗, and the values for t ≤ 35,000 are elimi-

nated, along with the steady state values. A linear regression is made and the Y-intercept
of the line is the value of

(
ρCp

)
.

Figure 5 shows
(
ρCp

)∗ − t for the same test as in Table 3.
Disregarding the results from times less than 35,000 s, the values of

(
ρCp

)∗ given by
Eq. 11 were used to perform a regression, using the program MATLAB. This provided
us with the adjustment results shown in Table 4.
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Table 3 Example of how
(
ρCp

)∗ was determined for different times in test 4 of the sand sample

t (s) T1t T2t T3t T4t T5t T6t
(
ρC p

)∗

120 0.088 0.096 0.113 0.162 0.113 0.085 1,717,044

180 0.069 0.089 0.098 0.155 0.092 0.073 3,206,181

240 0.126 0.103 0.114 0.17 0.112 0.089 3,367,059

300 0.242 0.119 0.118 0.171 0.115 0.088 4,075,012

360 0.43 0.151 0.11 0.165 0.109 0.079 5,514,246

Fig. 5 Adjustment with the Matlab of ρC p for test 4 (sand) excluding the first 35,000 s, and the maximum
time proportional to ρC p expected, i.e, more than 100,000 s

Table 4 Result of MATLAB’s curve fitting tools for sand test 4

General model:
(
ρC p

)∗ = (
ρC p

) + ς/χ · t

Coefficients (with 95 % confidence bounds):

ς/χ = 44.33 (44.19, 44.47)

ρC p = 1.618e+006 (1.608e+006, 1.628e+006)

Goodness of fit:

SSE: 2.096e+012

R-square: 0.9972

Adjusted R-square: 0.9972

RMSE: 4.403e+004
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Table 5 Results of the experimental calculations and the calculation of the cuttings’ volumetric heat
capacity ρC p

Experiment Clay Sand Limestone Shale

ρC p
1 1.17 1.41 1.193 1.375

2 1.31 1.43 1.361 0.9131

3 1.19 1.56 1.23 0.9896

4 1.31 1.62

5 1.27 1.50

Average 1.25 1.50 1.26 1.09

Fig. 6 Result of the simulation with the Matlab program in clay tests

123



J Math Chem (2013) 51:1139–1152 1151

Fig. 7 Profile of temperatures in the sensors line, according to the temperature experimental measurements
and according to simulation carried out with the Matlab program for the conductivity values between 0.41
and 0.49

As a result of the experiments and adjustments, the following values were obtained
for ρCp for the samples in question (Table 5).

6 Confirming the validity of the model

To confirm whether or not the simplifications applied in devising the model were
indeed valid, we conducted a simulation using MATLAB. We used the experimental
geometry, and entered the values for the heat source and the thermal parameters of
the ground that we obtained in the experiments with the clays. We then calculated the
temperatures of the different sensors. As a result of this simulation we obtained the
results in graph form that are shown in the Fig. 6.

The Fig. 7 shows a temperature profile in steady-state conditions for the different
sensors, as well as the results of the simulation for the material’s thermal conductivity
between the different values obtained for the experiment, namely 0.41 and 0.49 W/mK.
This confirmed that the temperatures found in the experiment (in red on the graph)
match up perfectly with a conductivity of 0.45 W/mK. Furthermore, it confirms that
the deviations that occur in the sensors that are farthest away from the heat source are
due to the fact that, in these points, the model deviates from reality, as was predicted
and indicated in the hypotheses.

7 Conclusions

1. The procedure proposed in this paper makes it possible to assess the thermal prop-
erties of borehole cuttings using a simple and inexpensive laboratory method.

2. This method produces values that reflect the real and repeated values obtained in
the different tests, in spite of the approximations used.
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3. A possible disadvantage of this procedure is that it uses large ground samples,
and in boreholes that cut through narrow lithological layers, cuttings from each
layer may not be large enough to satisfy the initial hypotheses.

4. The period during which measurements are taken, until steady-state conditions
are reached, is relatively long.

5. The conductivity calculation is relatively easy to do because it is determined in
steady-state conditions.

6. There are several drawbacks related to the fact that volumetric heat capacity must
be calculated during non-steady-state conditions. A number of elements must be
simplified, such as the complementary error function, which is linearised.

7. Given the validation of the conductivity results through numerical procedures,
along with the conformity of the hypotheses to the experiment, we may conclude
that the proposed experimental model is suitable for determining this parameter.
The values found in these experiments with cuttings are lower than the corre-
sponding values indicated in the literature for the lithologies of origin. This is
due to the fact that, in cuttings, the heat transfer process involves not only con-
duction through the material itself, but also conduction through air, which would
not occur in virgin ground.
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